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NDCX-Il beam must be accelerated
to ~3 MeV and compressed down to
~1 ns (~1 cm)

/

LITHIUM ION BEAM BUNCH Exiting beam available
for dE/dx measurement

Final Beam Energy: 3-5 MeV
Final Spot Size : ~ 1 mm diameter
Total Charge Delivered: 30 nC (~ 2x10!! particles or I.., ~ 30 A)




NDCX-II represents a significant upgrade over NDCX-|

Ion (atomic Linac Ton Beam | Target | Range | Energy
number / mass of | voltage | energy | energy | pulse | -microns | density
common isotope) | - MV | - MeV| -] - s (in.) |10"ym’

NDCX-I K" (19/39) 0.35 0.35 |10.001-] 2-3 0.3/1.5 0.04
0.003 (in solid/ to

20% Al) 0.06

NDCX-II Li" (3/7) 35-135-]01-( 1-2 7-4 0.25
or 5 15 0.28 | (or 5 w| (in solid to
Na™ (11 /23) hydro)[ Al 1

« For initial WDM experiments: baseline is a 1-ns Li* pulse.

» For experiments relevant to ion direct drive: require a longer pulse with a “ramped”
Kinetic energy, or a double pulse.

Glen Westenskow explored one approach to the latter.

« Possibility: Na*3 at 15 MeV has a shorter range than Li* at 5 MeV, due to the Z?2
scaling of ion deposition (per TRIM code).

It would require stripping on a dense plasma jet, introducing scattering;
but Na may offer a higher source current density than Li.
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Induction cells for NDCX-II are available from LLNL’s
decommissioned ATA facility
, af: r: m

Cells will be refurbished with
stronger, pulsed solenoids

Porcelain
Oil/Vacuum Interface

Ferrite Torroids
Test stand

has begun
to verify
performance

solenoid Acceleration Gap

water 70 ns, 250 kV input
cooling
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The HIFS-VNL has sufficient ATA parts to build NDCX-I,
enabling beam-target experiments at the Bragg peak & studies
of ion direct-drive for IFE




This simple circuit can generate a wide variety of shapes; other
equally simple circuits offer additional waveforms

iz

(C3 can be increased,
R3 or L2 decreased,
by inserting additional
components across
the cell)

ing.l

chargedéline §R2
o 0 | , =C3
§R3
ATA “compen- |
sation box” T

uction cell & accelerating

gap impedance

Waveforms generated for various component values (Blumlein source):

trp/bim cases with knee
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NDCX-Il uses an accel-decel injector in which the “einzel lens”
effect provides transverse confinement

+102 kV pulsed source +68 kV DC -1770 kV DC  solenoid
10 mA/cm? extraction electrode accel electrode
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NDCX-Il must make effective use of assets (accelerating cells
and Blumleins) from decommissioned ATA accelerator

Issues:
* ATA cells come with constraints:
— 1.4 x 103 Volt-seconds in each ferromagnetic core
— ATA Blumleins offer 200-250 kV, but only if pulse is < 70 ns

— At front end where longer pulses are needed, use custom voltage sources;
limit to ~ 100 kV for cost

« A gap must be “on” while any of the beam overlaps its extended fringe field.

To shorten that field, the 6.7-cm radius of the ATA beam pipe is reduced to 4.0 cm
« Some pulses must be “shaped” to combat space charge forces
« S0, need at least ~30 cells (20 w/ Blumleins + 10 w/ lower-voltage sources)

Nice developments:

« Atleast 40 ATA cells are available

* The 200-kV pulses can be shaped via inexpensive passive circuits
At higher energies, concept uses modular 5-cell “blocks”
 Induction accelerator can impart all or most of final ~8% velocity “tilt”
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We are well on our way toward a physics design for NDCX-|

» Accel-decel injector produces ~ 100 keV Li* beam with ~ 67 mA flat-top
* Induction accelerates itto 3.5 MeV at2 A

- The design is necessarily aggressive; 500

0.4

From 1-D code:
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 After neutralized drift compression, about 75% of the 30 nC beam charge
passes through the focal plane in a 1-ns window, with a minimal pre-pulse.

« The current of the compressed beam (averaged over 1 ns) is 23 A,
with a peak (averaged over 0.1-ns) of 32 A and an FWHM of 1 ns.

« However, we’re just beginning to develop the transverse dynamics & final focusing
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Physics design effort relies on PIC codes

* 1-D PIC code that follows (z,v,)
— Poisson equation with transverse falloff (“HINJ model”) for space charge

9o = 2 log (rpipe / Theamo) k,?=41(9g Meamo)
— A few hundred particles
— Models gaps as extended fringing field (Ed Lee’s expression)
— Flat-top initial beam with parabolic ends, with parameters from a Warp run

— “Realistic” waveforms: flat-top,“triangles” from circuit equation,
and low-voltage shaped “ears” at front end

— Interactive (Python language)

« Warp
— 3-D and axisymmetric (r,z) models; (r,z) used so far
— Electrostatic space charge and accelerating gap fields
— Time-dependent space-charge-limited emission

« LSP
— 3-D and axisymmetric (r,z) models; latter used to date
— Fully EM or Ohm'’s Law fields



Principle 1: Shorten Beam First (“non-neutral drift compression”)

Compress longitudinally before main acceleration

Want < 70 ns transit time through gap (with fringe field) as soon as possible
==> can then use 200-kV pulses from ATA blumleins

Compress carefully to minimize effects of space charge
— Avoid space-charge forces on main flat-top of pulse at early times
— Constant line charge ==> ear fields required only at beam ends

Want linear velocity tilt v,(z) = az + p
— Ideally, uniform spacing of “beads on the string” to avoid deformation of flat-top
— At least two gaps are required to apply such a tilt
For zero-length gaps, two gaps can do it exactly

For fringing gaps, no exact solution is possible; a least-squares optimization is
used, penalizing both nonlinearlity and nonuniformity
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Principle 2: Let It Bounce

* Rapid inward motion in beam frame is required to get below 70 ns
« Space charge ultimately inhibits this compression
« Beam is (ideally) nearly parabolic by this time

* However, this short a beam is not sustainable
— Ears to confine it, much less apply a tilt, can’t readily be made,
especially with fringing gap fields
— So, the beam “bounces” and starts to lengthen

« Fortunately, a longer beam still takes < 70 ns because it is now moving faster

 Allow it to lengthen while applying:
— additional acceleration via flat pulses
— confinement via ramped (“triangular”) pulses

« Then use final gaps to apply the “exit tilt” needed for Neutralized Drift Compression



Design as developed
using 1-D code
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Voltage waveforms for all gaps
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Pulse length (m) vs. z of center-of-mass
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600

200

70 ns

Pulse duration vs. z

- — time for the entire beam to cross a
plane at fixed z
Y + time for a single particle at mean
- + energy to cross the finite-length gap
° + time for the entire beam to cross
! the finite-length gap
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A series of snapshots shows how the (E,,z) phase space and
the line charge density evolve
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These snapshots show how the (v,,z) phase space and the line
charge density evolve (note the auto-scaling)
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Figure-of-merit for longitudinal focus is motivated by
target requirements for WDM studies

Focal plane is defined as: plane through which the greatest average beam current
passes in a 1.0 ns window

Current (A) in optimal 1.0-ns window

20

15

10

14
z (m) of plane

Inputs to focus calc:

Bin duration 0.1 ns

Window duration 1.0 ns

Separation of trial planes 0.10 m
Results of focus calc:

RMS-estimated focal plane 14.2 m
‘Best' focal plane 13.8 m

Average current in 1-ns window 22.7 A
Charge in window 22.7 nC

Percent of total charge in window 75.7 %
Average power in 1-ns window 79.8 MW
Energy in 1-ns window 79.8 mJ

Peak current at focal plane 32.4 A

Peak power at focal plane 113. 8 MW
FWHM at focal plane 0.99 ns
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Longitudinal focus has a shallow optimum for this beam

30 “best”
best - best plane best +

current (A) | 20°Mm L 20 cm
averaged best +
over0.1ns | 10 cm
bins 20/

10

L L O IR T | T | | | |
3100 3110 3120 3130 3140
time (ns)
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Studies using Warp
and LSP codes

(see Bill Sharp poster)
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Warp is used to simulate the accel-decel injection process

_potential contours vs z
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« Nominal run uses a source diameter of 2.9 cm and yields a flat-top current

of 67 mA, giving 10.1 mA/cm?.

« Could use a 1.4" (3.56 cm) source for 100 mA; would need to confirm that
transverse confinement is adequate for “fatter” beam in “thinner” pipe.

« The flat-top energy at the first gap is 102 kV.
* The current rise time is ~ 40 ns; the emitter voltage rise time is ~ 110 ns.



Warp simulations show reasonably smooth transverse dynamics

0.10
0.05

0.05

0.00 1 1 0.00}

0.05 0.05

The normalized transverse emittance in this run
grew in the accelerator from 0.9 to 1.2 mm-mr
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1-D code (top) & Warp (bottom) results agree, with differences
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Simulations of NDCX-II neutralized compression and focus
suggest that a plasma of density ~ 10" cm-3 is desirable

- Idealized beam, uniform plasma, so far: e Tilt g
. 14.00 | eam den5|ty 50 ns
— Li*, 2.8 MeV, 1.67 eV temperature I s
— 2-cm -5 or -6.7 mrad convergence B 5'k:V
— uniform current density; € = 24 mm-mrad = etrap
. . . i miscrm
— 0.7-A with parabolic 50-ns profile plasma-
— applying ideal tilt for 30 ns of beam
%2 mm 1-ns beam has 2x10'3 cm3 density
NDCXII 8.600
30T T T T L 8.000 50 100 150 200
N ] Z (cm)
£ 250 FCurrent 30
o F '~ |land radius - 25
~ 20} Vo - z Ohm’s law
ER: 2z =197 3 0 L\
S cm S 5 \ 3x1073 plasma
< f \ =
= 1 Subns 'im \
B w == —
O o J LY SR ] 0 T T —
275 280 285 290 295 0 0.0z 0.04 0.06 0.08 0.1
Time (ns) Radius
(LSP runs by D. Welch; others by A. Sefkow, M. Dorf; Warp code startin be used)
. . . el ml b, DO $ FCCSEFC i §¥
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We simulate injection from Cathodic-Arc Plasma sources

1.2 ns

Number density (1/cm**3)

-10%2
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0.15 1010

F10°
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0.05

107

0.00 - 108

0.00

4.5 ns

Number density (1/cm**3)

102
0.20

10"

0.15 1010

-10°
0.10

108

0.05
107

0.00 £ 10°

0.00

* This run corresponds to an NDCX-I configuration with 4 sources
- It was made by Dave Grote using Warp in 3-D mode
- LSP has been used extensively for such studies

R R . . sersere] il §¥
] ]
28 The ”eavy lon Fusion Science Virtual National Laboratory ’\ﬂ %1 l

2

BERKELEY LAB



Brief comment
on PLIA

(see Chi Yeung Ling poster)
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Pulse-Line lon Accelerator (PLIA) may serve as a
compact “afterburner” or an alternative front end

A traveling wave on a helical pulse line accelerates the ion bunch
—“surfing” mode: acceleration of short bunch;
—“snowplow” mode: aceleration and bunching of long pulse

Proof-of-principle test on NDCX-I: acceleration & longitudinal bunching
— Experiment WARP Calculation

Scaled helix for high gradient testing
— so far, peak gradient 0.35 MV/m
— partial discharges traced to high frequency
ringing from spark gap pulser, now reduced;
further reduction is being pursued



What remains
to be done
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Progress has been encouraging; much remains to be done

32

Proper accounting for initial beam-end energy variation due to space charge
(the 1-D run shown was initiated with a fully-formed uniform-energy beam)

— Other 1-D runs used a “model” initial energy variation and an entry “ear” cell;
they produced compressed beams similar to the one shown

— However, that variation was not realistic; a Warp run using the 1-D-derived
waveforms yielded inferior compression

Better understanding of beam-end wrap-around (causes and consequences)
A prescription for setting solenoid strengths to yield a well-matched beam

Optimized final focusing, accounting for dependence of the focal spot upon velocity
tilt, focusing angle, and chromatic aberration

Assessment of time-dependent focusing to correct for chromatic effects

Development of plasma injection & control for neutralized compression & focusing
(schemes other than the existing FCAPS may prove superior)

Establishment of tolerances for waveforms and alignment

Major goals remain:

— a self-consistent source-through-target design, including
assessment of tolerances etc., for WDM studies

— a prescription for modifications offering multiple pulses, ramped
energy, and/or greater total energy, for ion direct drive studies




DOE priorities include an ion-driven Warm Dense Matter facility

From An Interim Report on Facilities for the Future of Science (August 2007):

Integrated Beam-High Energy Density Physics Experiment (IB-HEDPX)

Update: Mission Need for the IB-HEDPX (formerly called
the Integrated Beam Experiment, or IBX), an
intermediate-scale experiment using heavy ion beams for
research on Warm Dense Matter (a midway state between
solid matter and plasmas), was approved by the
Department in 2005. Small-scale experiments are planned
in 2008-2009 as part of R&D to provide a scientific basis
for the new facility.

An IB-HEDPX capability for integrated acceleration
compression and focusing on high current, space-charge-
dominated beams would be unique—not available in any
existing accelerator in the world.

From DOE’s mission need document: “NDCX-II ... is necessary R&D to assess the
performance requirements of injection, acceleration and focusing of short pulses needed for
the IB-HEDPX. Out of the $6M R&D cost (for IB-HEDPX), $5M is for hardware upgrade of
NDCX-I to NDCX-II, which serves as a prototypical test-bed for the critical physics and
engineering for developing the design and construction methodology of IB-HEDPX”
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